2015年7月10日星期五

Disruptor详解

对Disruptor的最初印象就是ringbuffer。但是尽管ringbuffer是整个模式(Disruptor)的核心,但是Disruptor对ringbuffer的访问控制策略才是真正的关键点所在。
  • ringbuffer到底是什么?
正如名字所说的一样,它是一个环(首尾相接的环),你可以把它用做在不同上下文(线程)间传递数据的buffer。




基本来说,ringbuffer拥有一个序号,这个序号指向数组中下一个可用的元素。(校对注:如下图右边的图片表示序号,这个序号指向数组的索引4的位置。)



随着你不停地填充这个buffer(可能也会有相应的读取),这个序号会一直增长,直到绕过这个环。



要找到数组中当前序号指向的元素,可以通过mod操作:

sequence mod array length = array index

以上面的ringbuffer为例(java的mod语法):12 % 10 = 2。

事实上,上图中的ringbuffer只有10个槽完全是个意外。如果槽的个数是2的N次方更有利于基于二进制的计算机进行计算。

(校对注:2的N次方换成二进制就是1000,100,10,1这样的数字, sequence & (array length-1) = array index,比如一共有8槽,3&(8-1)=3,HashMap就是用这个方式来定位数组元素的,这种方式比取模的速度更快。)
那又怎么样?

如果你看了维基百科里面的关于环形buffer的词条,你就会发现,ringbuffer的实现方式,与其最大的区别在于:没有尾指针。ringbuffer只维护了一个指向下一个可用位置的序号。这种实现是经过深思熟虑的—ringbuffer选择用环形buffer的最初原因就是想要提供可靠的消息传递。我们需要将已经被服务发送过的消息保存起来,这样当另外一个服务通过nak (校对注:拒绝应答信号)告诉ringbuffer没有成功收到消息时,ringbuffer能够重新发送给他们。

听起来,环形buffer非常适合这个场景。它维护了一个指向尾部的序号,当收到nak(校对注:拒绝应答信号)请求,可以重发从那一点到当前序号之间的所有消息:



ring buffer和大家常用的队列之间的区别是,ringbuffer不删除buffer中的数据,也就是说这些数据一直存放在buffer中,直到新的数据覆盖他们。这就是和维基百科版本相比,ringbuffer不需要尾指针的原因。ringbuffer本身并不控制是否需要重叠(决定是否重叠是生产者-消费者行为模式的一部分
  • 它为什么如此优秀?
之所以ringbuffer采用这种数据结构,是因为它在可靠消息传递方面有很好的性能。这就够了,不过它还有一些其他的优点。

首先,因为它是数组,所以要比链表快,而且有一个容易预测的访问模式。(译者注:数组内元素的内存地址的连续性存储的)。这是对CPU缓存友好的—也就是说,在硬件级别,数组中的元素是会被预加载的,因此在ringbuffer当中,cpu无需时不时去主存加载数组中的下一个元素。(校对注:因为只要一个元素被加载到缓存行,其他相邻的几个元素也会被加载进同一个缓存行)

其次,你可以为数组预先分配内存,使得数组对象一直存在(除非程序终止)。这就意味着不需要花大量的时间用于垃圾回收。此外,不像链表那样,需要为每一个添加到其上面的对象创造节点对象—对应的,当删除节点时,需要执行相应的内存清理操作。

  • ringbuffer的为什么这么快?--cache line padding
设想你的long类型的数据不是数组的一部分。设想它只是一个单独的变量。让我们称它为head,这么称呼它其实没有什么原因。然后再设想在你的类中有另一个变量紧挨着它。让我们直接称它为tail。现在,当你加载head到缓存的时候,你也免费加载了tail。

听想来不错。直到你意识到tail正在被你的生产者写入,而head正在被你的消费者写入。这两个变量实际上并不是密切相关的,而事实上却要被两个不同内核中运行的线程所使用。
设想你的消费者更新了head的值。缓存中的值和内存中的值都被更新了,而其他所有存储head的缓存行都会都会失效,因为其它缓存中head不是最新值了。

现在如果一些正在其他内核中运行的进程只是想读tail的值,整个缓存行需要从主内存重新读取。那么一个和你的消费者无关的线程读一个和head无关的值,它被缓存未命中给拖慢了。

当然如果两个独立的线程同时写两个不同的值会更糟。因为每次线程对缓存行进行写操作时,每个内核都要把另一个内核上的缓存块无效掉并重新读取里面的数据。你基本上是遇到两个线程之间的写冲突了,尽管它们写入的是不同的变量。

这叫作“伪共享”(译注:可以理解为错误的共享),因为每次你访问head你也会得到tail,而且每次你访问tail,你也会得到head。这一切都在后台发生,并且没有任何编译警告会告诉你,你正在写一个并发访问效率很低的代码。

解决方案-神奇的缓存行填充

你会看到Disruptor消除这个问题,至少对于缓存行大小是64字节或更少的处理器架构来说是这样的(译注:有可能处理器的缓存行是128字节,那么使用64字节填充还是会存在伪共享问题),通过增加补全来确保ring buffer的序列号不会和其他东西同时存在于一个缓存行中。
1public long p1, p2, p3, p4, p5, p6, p7; // cache line padding
2    private volatile long cursor = INITIAL_CURSOR_VALUE;
3    public long p8, p9, p10, p11, p12, p13, p14; // cache line padding


因此没有伪共享,就没有和其它任何变量的意外冲突,没有不必要的缓存未命中。
在你的Entry类中也值得这样做,如果你有不同的消费者往不同的字段写入,你需要确保各个字段间不会出现伪共享。

整理自:http://ifeve.com/disruptor-writing-ringbuffer/

没有评论:

发表评论